Black carbon radiative heating effects on cloud microphysics and implications for the aerosol indirect effect: 2. Cloud microphysics

نویسندگان

  • Athanasios Nenes
  • William C. Conant
  • John H. Seinfeld
چکیده

This work examines the effect of black carbon (BC) radiative heating on cloud droplet formation. Changes in cloud droplet concentration and cloud albedo due to the presence of black carbon are computed for different cases of aerosol size distributions, meteorological conditions, BC mixing state, and aerosol composition. We examine the effect of three new mechanisms (that result from BC heating) that can affect cloud droplet number and lifetime. Two of these mechanisms act to increase cloud droplet number or lifetime: i) the ability of BC to decrease the collection efficiency of giant CCN, and, ii) the delayed growth of low Sc CCN that allow higher Sc CCN to form droplets. These two mechanisms complement each other in terms of increasing cloud droplet number, since it is shown that the former is most efficient at strong updrafts, and the latter at low updraft velocities. A third mechanism identified, gas-phase heating (which is different from the so-called ”semi-direct effect”) in our simulations acts to decrease LWC, and thus albedo; however the droplet number concentration does not change significantly due to dynamic readjustments in cloud supersaturation. The simulations indicate that the mixing state of BC with the CCN population can have an important influence on the effect of BC heating on the droplet population. Although additional work is necessary to fully assess the effects of BC heating on cloud microphysics and climate, this work shows that these effects are more complex than currently thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Black carbon radiative heating effects on cloud microphysics and implications for aerosol indirect forcing: 1. Extended Köhler theory

Black carbon (BC) aerosol absorbs sunlight that might have otherwise been reflected to space and changes the radiative heating of the atmosphere and surface. These effects may alter the dynamical and hydrological processes governing cloud formation. A new, microphysical, effect of BC on climate is identified here, in which solar heating within BCcontaining cloud condensation nuclei (CCN) slows ...

متن کامل

Observed impacts of vertical velocity on cloud microphysics and implications for aerosol indirect effects

[1] The simultaneous measurements of vertical velocity and cloud droplet size distributions in cumuli collected during the RACORO field campaign over the Atmospheric Radiation Measurement Program’s Southern Great Plains site near Lamont, Oklahoma, US, are analyzed to determine the effects of vertical velocity on droplet number concentration, relative dispersion (the ratio of standard deviation ...

متن کامل

Natural aerosol direct and indirect radiative effects

[1] Natural aerosol plays a significant role in the Earth’s system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calcul...

متن کامل

Uncertainties in global aerosols and climate effects due to biofuel emissions

Aerosol emissions from biofuel combustion impact both health and climate; however, while reducing emissions through improvements to combustion technologies will improve health, the net effect on climate is largely unconstrained. In this study, we examine sensitivities in global aerosol concentration, direct radiative climate effect, and cloud-albedo aerosol indirect climate effect to uncertaint...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002